第691章 穿行实验 (第2/2页)
与x轴垂直的,辟如y轴,亦或是z轴,都可以是x轴的"里世界",这主要取决于做实验的"圆形"位于哪个平面。..
当圆形这个图案位于xy平面时,y轴就是x轴的"里世界"。
于是,位于xy平面上的圆形穿过x轴时,一()...co
..
维生物惊讶地发现,为什么一个点会突然分裂成两个点,然后两个点再"前后"移动,移动到顶点的时候,两点之间的距离正好是圆形的直径。
等最大距离,也就是圆形的直径过了之后,x轴上的两个点,就会互相靠近,直至重新恢复,合成为一个点。
这是x轴奇特的现象,为什么会如此奇特,便是因为在x轴上穿行的东西,是二维特有的线条或者图案。
看看,一维生物无法理解,但如果是生活在二维的生物,它们就能理解,不过是一个圆形图案,在xy平面移动罢了。
这么解释,是否清晰了许多。
但请注意,虽说点分裂而又合成,在x轴上似乎毫无变化,但实际上,圆形的圆心坐标,早已在y轴移动。
而单独的y轴,即便是"里世界",也无法诠释更高维度的圆形图案,它最多只能呈现两个一直保持同样距离的点移动的过程。
同样的,三维以xy-z轴举例。
假设三维特有的东西——球体,球心位于z轴,球体穿过xy平面,二维生物生活在xy平面。
那么,对二维生物而言会发生什么,不过多赘述:点→圆→点。
需要注意的是,球体的球心,在z轴上移动。
"表世界"自然是xy平面,"里世界"则是z轴的这个"方向"所在的平面,也就是xz、yz平面,这些平面互相垂直,并且全部垂直于xy平面。
每一维度都建立在上一个维度的基础上,第四维度也不例外。
如果一个二维空间分解为一维空间,至少有2个一维空间才能构成一个二维空间。
接着,三维空间分解为二维空间,至少有3个二维空间体才能构成一个三维空间体。
比如xy、yz、xz平面,直径相同,圆心全部位于圆点的圆形,就能构成一个球体。
同样的,一个四维球体,至少由四个三维球体构成,而恰好,太极图就是四维空间球体的缩影。
到了四维空间,我们便需要四维空间上的"球体"穿行三维空间。
假设四维空间上的"球体球心"位于轴,四维坐标自然是xy-z轴。
那么它需要穿过xy-z的空间,实验对象的中心在轴上移动。
那么,会发生什么?
一维"表世界"的奇特,表现在分裂成两个点,然后距离延长,再缩短重新合成。
二维的奇特,表现在圆点拓宽成圆形,然后重新变回点。
能推理出三维的奇特了吗?是的,点膨胀成球体,然后重新压缩成点的过程,就是四维"球体"穿行三维空间的过程。
但问题是,三维空间的生物,也就是我们,"视角"所看到的并不是真实的。
就像球体经过平面时的变化,只有点→圆→点,只能看到非常浅显的"一面"。...co